
Security Assurance Case Design
Tool

Dec1718 - Brandon Huegli, John Koehn, Jordan Lawrence

Client/Advisor:...

1

Presentation Outline
1. General Project Information

a. Problem Statement

b. General Concept

2. Requirements

a. Functional

b. Nonfunctional

c. Technology

3. Design

a. Development Timeline

b. Implementation

4. Testing

5. Project Results and Use Samples

2

Problem
● Ensuring continued security can take

significant time

General Concept

Project
● Develop eclipse plugin

○ design and manage security assurance cases.

● Enable users to

○ create, edit, and save/load assurance case

diagrams

○ Nodes represent specific claims or evidence

○ Nodes affected by changes marked visually.

5

Functional Requirements
1. Add/Remove graphical elements to assurance case diagram

2. Multiple graphical elements

○ Case Claim

○ Evidence

○ Edges

3. User Interaction with elements

○ Move elements

○ Edit Text

○ Connect elements

6

Functional Requirements - Cont.
4. Connect graphical elements to function entry points

5. Visually alert user when claim and test are potentially no longer valid

6. Save/Load diagrams.

7

Non functional requirements
1. Visually Pleasing and Professional Interface

○ This software, while a school project, is hypothetically useful to companies that expect a certain

level of professionalism.

2. Simple, easy to use

○ This software is intended to replace and improve on existing processes, so it must be better, easier

to use, and faster than existing products.

3. Secure and bug free

○ Security assurance cases represent the security of other software, and so compromises or bugs in

our program can expose risks in unrelated code.

8

Technology Selection and Requirements: Groundwork
● Framework for entire project

● Capable of handling all project

requirements

● Long researched decision

9

Technology Selection and Requirements: Graphiti (Cont.)
● What?

○ Designed to build diagram/chart based

applications

● Why?

○ Meant for chart based applications!

○ Versatile and feature rich

● Why Graphiti?

○ Graphiti is designed for Eclipse plugins

○ Most professional looking of the options

10

Technology Selection and Requirements: WALA
● What?

○ Static analysis tool

○ Useful for generating call graphs

○ Officially supports Java and Javascript

● Why?

○ Helpful in validating claims

■ Can determine method dependencies for evidence supporting claims

■ If the call graph changes, may invalidate claim and flag in the system

● Why WALA?

○ The only library that had the functionality we needed

11

Technology Selection and Requirements: JGit
● What?

○ Java implementation of Git

● Why?

○ Allows us to analyze when methods change

● Why JGit?

○ Few to no alternatives to provide similar functionality

○ Easily implemented into our Java based project to execute git commands

12

Design - Development Timeline
● The first semester was dedicated to;

○ Gaining some understanding of the project domains (security assurance cases, Eclipse plugin

development)

○ Implementing the diagram editor and fulfilling UI centered requirements

● This semester has been focused on;

○ Fixing some minor outstanding bugs on the diagram editor

○ The Git/Wala verification feature

13

Design - Implementation
Graphiti

● Centers around a feature provider

● Using feature provider, we implemented

custom features

● Feature provider also let us override

existing features to meet project needs

14

Design - Implementation
JGit

● Allows connection to Git repository

through a config file

● Used Git diff between commits to get files

changed and lines numbers

● Created our own Java and Javascript

language parser to get methods changed

based on Git diff information.

15

Design - Implementation
Wala

● Framework supplies classes to generate and use

the call graph.

● Supports Java (source/binary) and Javascript

(standalone/html embedded).

○ Dr. Othmane specified Javascript as the

main focus.

○ HTML embedded was found to be the

most stable implementation.

16

Testing
● Created bi-weekly sprints with Dr. Othmane

● Weekly, reported progress and get input

● Post sprint, we gave a demo to Dr. Othmane

● Dr. Othmane provided feedback to ensure product

follows his vision/requirements

17

Current Status and Analysis
● Works for javascript present in html files

● Can be expandable to java and javascript files

● Pleased with current state

18

Project Demo - Create new diagram

19

Make the Assurance Case

20

Add Entry Points

21

Generate Callgraph

22

Output

23

