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Problem
● Ensuring continued security can take 

significant time



General Concept



Project 
● Develop eclipse plugin  

○ design and manage security assurance cases. 

● Enable users to

○ create, edit, and save/load assurance case 

diagrams

○ Nodes represent specific claims or evidence

○ Nodes affected by changes marked visually.
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Functional Requirements
1. Add/Remove graphical elements to assurance case diagram

2. Multiple graphical elements

○ Case Claim

○ Evidence

○ Edges

3. User Interaction with elements

○ Move elements

○ Edit Text

○ Connect elements
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Functional Requirements - Cont.
4. Connect graphical elements to function entry points

5. Visually alert user when claim and test are potentially no longer valid

6. Save/Load diagrams.
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Non functional requirements
1. Visually Pleasing and Professional Interface

○ This software, while a school project, is hypothetically useful to companies that expect a certain 

level of professionalism.

2. Simple, easy to use

○ This software is intended to replace and improve on existing processes, so it must be better, easier 

to use, and faster than existing products.

3. Secure and bug free

○ Security assurance cases represent the security of other software, and so compromises or bugs in 

our program can expose risks in unrelated code.
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Technology Selection and Requirements: Groundwork
● Framework for entire project

● Capable of handling all project 

requirements

● Long researched decision
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Technology Selection and Requirements: Graphiti (Cont.)
● What?

○ Designed to build diagram/chart based 

applications

● Why?

○ Meant for chart based applications!

○ Versatile and feature rich

● Why Graphiti?

○ Graphiti is designed for Eclipse plugins

○ Most professional looking of the options
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Technology Selection and Requirements: WALA
● What?

○ Static analysis tool

○ Useful for generating call graphs

○ Officially supports Java and Javascript

● Why?

○ Helpful in validating claims

■ Can determine method dependencies for evidence supporting claims

■ If the call graph changes, may invalidate claim and flag in the system

● Why WALA?

○ The only library that had the functionality we needed
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Technology Selection and Requirements: JGit
● What?

○ Java implementation of Git

● Why?

○ Allows us to analyze when methods change

● Why JGit?

○ Few to no alternatives to provide similar functionality

○ Easily implemented into our Java based project to execute git commands
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Design - Development Timeline
● The first semester was dedicated to;

○ Gaining some understanding of the project domains (security assurance cases, Eclipse plugin 

development)

○ Implementing the diagram editor and fulfilling UI centered requirements

● This semester has been focused on;

○ Fixing some minor outstanding bugs on the diagram editor

○ The Git/Wala verification feature
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Design - Implementation
Graphiti

● Centers around a feature provider

● Using feature provider, we implemented 

custom features

● Feature provider also let us override 

existing features to meet project needs
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Design - Implementation
JGit

● Allows connection to Git repository 

through a config file

● Used Git diff between commits to get files 

changed and lines numbers

● Created our own Java and Javascript 

language parser to get methods changed 

based on Git diff information.
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Design - Implementation
Wala

● Framework supplies classes to generate and use 

the call graph.

● Supports Java (source/binary) and Javascript 

(standalone/html embedded). 

○ Dr. Othmane specified Javascript as the 

main focus.

○ HTML embedded was found to be the 

most stable implementation.
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Testing
● Created bi-weekly sprints with Dr. Othmane

● Weekly, reported progress and get input

● Post sprint, we gave a demo to Dr. Othmane

● Dr. Othmane provided feedback to ensure product 

follows his vision/requirements
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Current Status and Analysis
● Works for javascript present in html files

● Can be expandable to java and javascript files

● Pleased with current state
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Project Demo - Create new diagram
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Make the Assurance Case
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Add Entry Points
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Generate Callgraph
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Output
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