Security Assurance Gase Design
Tool

Decl1718 - Brandon Huegli, John Koehn, Jordan Lawrence
Client/Advisor:...

Presentation Qutline

1. General Project Information
a. Problem Statement
b. General Concept
2. Requirements
a. Functional
b. Nonfunctional
c. Technology
3. Design
a. Development Timeline
b. Implementation

4. Testing
5. Project Results and Use Samples

Problem

e Ensuring continued security can take
significant time

General Concept

Developer Updates/creates
security cases and claims

Links security cases ta
where they are meet in code

plug-in and developer are
happy

Developer updates code

Developer verifies security
case is still meet

Plug-in views git commit
differences and marks the
security cases affected

Project

2 Diagram1 ' I~ Sub-Diagram % |

e Develop eclipse plugin
o design and manage security assurance cases.
e Enable users to
o create, edit, and save/load assurance case
diagrams
o Nodes represent specific claims or evidence
o Nodes affected by changes marked visually.

Functional Requirements

1. Add/Remove graphical elements to assurance case diagram

2. Multiple graphical elements

o Case Claim
o Evidence

o Edges
3. User Interaction with elements

o Move elements
o Edit Text

o Connect elements

Functional Requirements - Gont.

4. Connect graphical elements to function entry points

5. Visually alert user when claim and test are potentially no longer valid

6. Save/Load diagrams.

Non functional requirements

1. Visually Pleasing and Professional Interface
o This software, while a school project, is hypothetically useful to companies that expect a certain
level of professionalism.
2. Simple, easy to use
o This software is intended to replace and improve on existing processes, so it must be better, easier
to use, and faster than existing products.
3. Secure and bug free

o Security assurance cases represent the security of other software, and so compromises or bugs in
our program can expose risks in unrelated code.

Technology Selection and Requirements: Groundwork
N S S S

JGraphx

e Framework for entire project

e (apable of handling all project
requirements

e Long researched decision

Eclipse Graphii

JGrapht

Graphviz

Would be able to
meet the
requirements of the
project.

Would be easy to
begin development
with.

Built for making
eclipse plug ins.

Aesthetically the most
pleasing.

Acceptable
documentation and
tutorials.

Would've been likely
able to meet
requirements in most
ways.

Able to draw
diagrams needed.

Built on Java Swing.
Mot eclipse specific.

Dated aesthetic.

Team lacks
experience with plug
in development.

Built on Java Swing.

Mot intended for the
style of diagram

Poor available
information.

Doesn't appear to be
built for Java or
Eclipse.

We decided that while
this framework was a
candidate it met
our requirements, it
was not the best
option available.

The team has chosen
Graphiti for
development of the
project.

This framework was
not considered a
candidate compared
to the previous
options.

As with JGrapht, this
library was not
considered a
candidate.

Technology Selection and Requirements: Graphiti (Cont.)

e What? S
o Designed to build diagram/chart based £l i
applications =
e Why?

1 New Referermnce

o Meant for chart based applications!
o Versatile and feature rich
e Why Graphiti?
o Graphiti is designed for Eclipse plugins
o Most professional looking of the options

10

Technology Selection and Requirements: WALA

e What?

o Static analysis tool
o Useful for generating call graphs
o Officially supports Java and Javascript
e Why?
o Helpful in validating claims
m Can determine method dependencies for evidence supporting claims
m If the call graph changes, may invalidate claim and flag in the system

e Why WALA?
o The only library that had the functionality we needed

11

Technology Selection and Requirements: JGit

e What?

o Java implementation of Git
e Why?

o Allows us to analyze when methods change
e Why JGit?

o Few to no alternatives to provide similar functionality
o Easily implemented into our Java based project to execute git commands

12

Design - Development Timeline

e The first semester was dedicated to;
o Gaining some understanding of the project domains (security assurance cases, Eclipse plugin
development)
o Implementing the diagram editor and fulfilling UI centered requirements
e This semester has been focused on;
o Fixing some minor outstanding bugs on the diagram editor
o The Git/Wala verification feature

13

=
—

Design - Implementati

E} eniorDesign i|1| SeniorDesignFeaturel

G] tl [dFeature getAddFeature (IAddContext

instanceof IAddConnectio

return new AddConnectionFeature (th
e Centers around a feature provider

e Using feature provider, we implemented o
custom features

e Feature provider also let us override
existing features to meet project needs

ic T

return new ICu:
{ new RenameCu: ciateDiagramCustomFeature (this) };

14

Design - Implementation

public void execute(ICustomCont:

JGit

e Allows connection to Git repository
through a config file

e Used Git diff between commits to get files
changed and lines numbers

e Created our own Java and Javascript
language parser to get methods changed

based on Git diff information.

15

Design - Implementation

Wala

public class Walaltil

public static boolean isClaimvalid(strin

e Framework supplies classes to generate and use
the call graph.
e Supports Java (source/binary) and Javascript
(standalone/html embedded).
o Dr. Othmane specified Javascript as the
main focus.
o HTML embedded was found to be the

most stable implementation.

16

Testing

e C(reated bi-weekly sprints with Dr. Othmane
e Weekly, reported progress and get input

Agile

software

e Post sprint, we gave a demo to Dr. Othmane

f development
cycle
e Dr. Othmane provided feedback to ensure product I I

follows his vision/requirements

17

Current Status and Analysis

e Works for javascript present in html files
e (an be expandable to java and javascript files

e Pleased with current state

18

Project Demo - Create new diagram

Java Project

Go Into Project...

& Mew Diagram

Open in New Window Package
Show In Alt+ShiftsW > Class Diagram

CtrlaC Interface Select diagram type
Enum
Annotation
Souice Eolder Diagram Type | SeniorDesign

Java Working Set

Folder

File

Untitled Text File

R £
Build Path
Refactor Alt+Shift+T >

Import... JUnit Test Case
Export...
Refresh

»se Project Ctrl+MN
yse Unrelated Projects

Make the Assurance Case

I= *Assurance Case 1 &3 |

& Element Name

Element Mame

|

Cancel

| 5% Palette

[,\\3 Select

Tk
2+ Marquee

r
'
Lo

| = Connections

Connection

E: Objects

Evidence (Circle)
Rationale {Cwval)
Claim (Rectangle)

Strategy
(Parallelogram)

Add Entry Points

21

Generate Gallgraph

An cutling 15 not availab

<! Undo seniordesign.features.customFeatures.OpenDataCustomFeature
=h Print..

Copy
Paste

Update Ctrl+F5
Remowe Shift+Delete

Delete
Features Rename
Validate Open Linked Diagram

Azzociate Diagram
Team g

Replace With
Compare With

Generate Callgraph

Revalidate Claim

Export Diagram... Ctrl+O

Remove from Context Ctrl+ Alt+Shift+ Down

r
&= "hssurance Case 1 &2 |

i Marquee
| == Connections

Connection

| = Objects

Evidence (Circle)
Rationale (Owval)
Claim (Rectangle)

Strategy
(Parallelogram)

