
Security​ ​Assurance​ ​Case
Design​ ​Tool

Client/Advisor:​ ​Dr.​ ​Lotfi​ ​Ben-Othmane

John​ ​Koehn
Brandon​ ​Huegli

Jordan​ ​Lawrence

Team​ ​Dec1718

Security​ ​Assurance​ ​Case​ ​Design​ ​Tool 0

1.​ ​Revised​ ​Design 2
1.1​ ​Project​ ​Goal 2
1.2​ ​Requirements 3

1.2.1​ ​Functional 3
1.2.2​ ​Non​ ​Functional 4

1.3​ ​Component​ ​Design 4
1.3.1​ ​Diagram​ ​Editor 4
1.3.2​ ​Git​ ​and​ ​Code​ ​Integration​ ​Functionality 5

2.​ ​Testing 5
2.1​ ​Process 5
2.2​ ​Results 5

3.​ ​Related​ ​Products 6

4.​ ​Related​ ​Literature 7

Appendix​ ​I​ ​-​ ​Operation​ ​of​ ​Software 9

1

1.​ ​Revised​ ​Design
This​ ​section​ ​goes​ ​over​ ​the​ ​goal​ ​of​ ​the​ ​project,​ ​the​ ​requirements​ ​and​ ​the​ ​design.

1.1​ ​Project​ ​Goal

The main objectives for this project were to develop an Eclipse plugin based application

for the creation of assurance case diagrams, and implementing features to assist in verifying the
continued validity of the claims within that case. These features took the form of allowing the
application to use Git integration to check if a diagram element's entered "entry point" function
was affected by the most recent Git commit. This software is being developed for Dr. Othmane
at Iowa State University, with the hope of helping further his research related to assur ance
cases.​ ​See​ ​fig.​ ​1.1.1​ ​for​ ​an​ ​example​ ​of​ ​what​ ​a​ ​security​ ​assurance​ ​case​ ​diagram​ ​might​ ​look​ ​like.

Fig.​ ​1.1.1​ ​Example​ ​security​ ​assurance​ ​case

2

Fig.​ ​1.1.2​ ​General​ ​application​ ​flow

In the Fall semester, we primarily worked on completing the user interface functionality

of the software, including the diagram elements and the necessary features of that. This
semester, we worked to add the ability to generate and parse a function call graph, and use a
Git change log to find modified functions and mark diagram elements that contained an affected
function as its entry point function. See fig. 1.1.2 for the general concept flow of the project.The
design and implementation of these two aspects are discussed further in depth below. See
Appendix​ ​I​ ​for​ ​reference​ ​images​ ​and​ ​text​ ​describing​ ​the​ ​operation​ ​of​ ​the​ ​software.

1.2​ ​Requirements
While our project was developed in a somewhat iterative manner with input from Dr.

Othmane guiding our sprint planning, we developed some basic key functional and
nonfunctional​ ​requirements​ ​that​ ​would​ ​need​ ​to​ ​be​ ​met​ ​for​ ​the​ ​project​ ​to​ ​be​ ​successful.

1.2.1​ ​Functional
1. The diagram editor shall contain all the necessary elements to model a

security​ ​assurance​ ​claim.
2. The diagram editor shall allow elements to be moved, resized, added,

removed,​ ​etc.​ ​freely.
3.​ ​A​ ​diagram​ ​element​ ​shall​ ​be​ ​able​ ​to​ ​be​ ​linked​ ​to​ ​another,​ ​separate​ ​diagram​ ​file.

3

4. Diagram elements shall contain a field for entering descriptive data, and
another​ ​for​ ​entering​ ​code​ ​entry​ ​points​ ​connected​ ​to​ ​that​ ​element.

5. When an entry point function, or any function utilized directly or indirectly by
that function changes, the diagram elements having that entry point will be visually
identified.

6.​ ​Changed​ ​functions​ ​will​ ​be​ ​retrieved​ ​from​ ​a​ ​connected​ ​Git​ ​repository.
7. Child function calls will be identified by generating a traversing a call graph

using​ ​the​ ​Wala​ ​library.
8.​ ​The​ ​call​ ​graph​ ​functionality​ ​shall​ ​support​ ​Javascript​ ​embedded​ ​in​ ​an​ ​html​ ​file.
9.​ ​Diagram​ ​files,​ ​and​ ​all​ ​connected​ ​data​ ​should​ ​be​ ​able​ ​to​ ​be​ ​saved​ ​and​ ​loaded.

1.2.2​ ​Non​ ​Functional
1.​ ​The​ ​application's​ ​interfaces​ ​should​ ​be​ ​visually​ ​intuitive​ ​to​ ​an​ ​end​ ​user.
2.​ ​The​ ​application​ ​must​ ​be​ ​implemented​ ​as​ ​an​ ​Eclipse​ ​plugin.
3. The application should be responsive to under a second, except for the call

graph​ ​generation,​ ​which​ ​necessarily​ ​takes​ ​longer.

1.3​ ​Component​ ​Design

The application's functionality can be essentially divided into two main components; the

user interface, encompassing the need to create and edit diagrams, and the integrated ability to
determine the methods/functionality affected by a project's associated Git change log, which is
visually represented into the diagram. The design originally gonna have test cases to verify
security claims would be meet. However, due to the complexity of incorporating the feature, we
had​ ​to​ ​remove​ ​it​ ​from​ ​our​ ​design.

1.3.1​ ​Diagram​ ​Editor

The user interface was implemented using the in-development Eclipse framework
Graphiti, which is designed to meet use cases similar to our application; the development of
Eclipse plugins featuring graph/diagram editors. Graphiti provides some base functionality in
terms of creating and saving the actual diagram files, and otherwise provides a somewhat rigid
structure for implementing the details of the editor. At a simplistic level, Graphiti requires the
implementation of specific interfaces for diagram elements or functionality, such as the shapes
and connecting arrows, or the ability to resize elements. These classes are then "registered" or
included in what Graphiti calls "providers" which allow access to those items within a diagram
file.

4

1.3.2​ ​Git​ ​and​ ​Code​ ​Integration​ ​Functionality

This functionality allows the diagram to be connected in some ways to the code within

the Eclipse project, and the project's Git repository in relation to the assurance case being
modeled in the diagram. A "claim" element within the diagram can define an entry point, or
which functions are related to that claim's validity. The Git change log is then retrieved for the
last commit, and if that entry point, or any functionality used by that entry point is modified the
claim​ ​is​ ​visually​ ​marked​ ​invalid​ ​for​ ​the​ ​user​ ​to​ ​then​ ​revalidate.

This ability was achieved using Wala to generate a call graph from changed functions
retrieved from Git through JGit. When the user selects "generate callgraph" from the menu, a
call graph is generated for each modified file, and the graph is traversed to check if any of the
changed methods or their predecessors have been modified, and are a defined entry point for
any​ ​element​ ​of​ ​the​ ​diagram.

2.​ ​Testing
Below​ ​is​ ​a​ ​description​ ​of​ ​our​ ​testing​ ​process​ ​and​ ​the​ ​results​ ​of​ ​that​ ​methodology.

2.1​ ​Process

We worked on weekly to bi-weekly sprints based on the scope of the planned changes.
Every week we would report and demonstrate our progress to Dr. Othmane, where he would
then provide feedback and guidance on additions, changes, or fixes. We would incorporate new
feedback into our sprints to make sure our vision and Dr. Othmane’s vision of the product was
the same. In this way, our testing process mirrored the development itself as a continually
evolving​ ​process.

2.2​ ​Results

While software is often tested with a more explicit testing phase and with test cases, the
iterative process we used was suited to our development. Going into this project we had little
knowledge of the project's domains, like security assurance cases and eclipse plugin
development. Our iterative process allowed us to get quicker feedback on our progress, and
ensure​ ​the​ ​product​ ​we​ ​were​ ​developing​ ​was​ ​inline​ ​with​ ​Dr.​ ​Othmane's​ ​needs.

5

3.​ ​Related​ ​Products
The main functionality of our project focuses around the diagram editor, and interactions

involving diagram elements. In the beginning design and planning stages for the project, we
looked at a range of technologies and frameworks before deciding on Graphiti to develop that
editor. The rest of the project is mainly plain Java, and so this decision was one of the main
design​ ​choices​ ​we​ ​faced.

The first candidate library we found was JGraphx, which is built on top of Java Swing.
This means we could've began developing with it much faster, as we all had familiarity with
Swing, and its documentation is pretty good. However, JGraphx had some downsides as well;
we felt Java Swing was not the strongest approach to the very interactive, dynamic GUI
demanded by our project. The library also had a very dated aesthetic; while this isn't necessarily
very​ ​important,​ ​when​ ​compared​ ​to​ ​our​ ​other​ ​options​ ​we​ ​decided​ ​against​ ​using​ ​JGraphx.

The next framework we considered turned out to be what we used in the end, Eclipse
Graphiti. Graphiti was created for making eclipse plug ins with charts/diagrams/graphs, which
would fit into our design goals well. It also had an acceptable, if somewhat lacking set of
documentation, and had a more up to date aesthetic appearance. The only real concern with
using this was our lack of experience with it, and the fact that it is still in early development, not
even​ ​considered​ ​a​ ​full​ ​release.​ ​However,​ ​we​ ​felt​ ​this​ ​was​ ​our​ ​best​ ​option.

Next we considered JGrapht. Like JGraphX, this framework was built on top of Java
Swing, so it also came with the same drawbacks and advantages of that. Additionally, the
design goals of JGrapht did not as closely align with our project; we felt its intention was for a
different style of diagrams than we needed. This meant it was a possible workable option, but
far​ ​from​ ​ideal​ ​and​ ​not​ ​comparable​ ​to​ ​the​ ​better​ ​options​ ​available.

Finally, we looked at Graphviz. This appeared to be able to generate the style of
diagrams we needed, but had very poor available information, and did not appear to be built of
Java, or Eclipse. Like JGrapht, this was an option we found, but did not really consider a serious
contender​ ​compared​ ​to​ ​Graphiti​ ​or​ ​JGraphx.

Summary​ ​Chart

JGraphx*​[1] Would​ ​be​ ​able​ ​to
meet​ ​the
requirements​ ​of​ ​the
project.

Would​ ​be​ ​easy​ ​to
begin​ ​development
with.

Built​ ​on​ ​Java​ ​Swing.

Not​ ​eclipse​ ​specific.

Dated​ ​aesthetic.

We​ ​decided​ ​that
while​ ​this​ ​framework
was​ ​a​ ​candidate​ ​as​ ​it
met​ ​our
requirements,​ ​it​ ​was
not​ ​the​ ​best​ ​option
available.

Eclipse​ ​Graphiti*​[2] Built​ ​for​ ​making
eclipse​ ​plug​ ​ins.

Aesthetically​ ​the

Team​ ​lacks
experience​ ​with​ ​plug
in​ ​development.

The​ ​team​ ​has​ ​chosen
Graphiti​ ​for
development​ ​of​ ​the
project.

6

most​ ​pleasing.

Acceptable
documentation​ ​and
tutorials.

JGrapht*​[3] Would’ve​ ​been​ ​likely
able​ ​to​ ​meet
requirements​ ​in​ ​most
ways.

Built​ ​on​ ​Java​ ​Swing.

Not​ ​intended​ ​for​ ​the
exact​ ​style​ ​of
diagram​ ​necessary.

This​ ​framework​ ​was
not​ ​considered​ ​a
candidate,​ ​as​ ​it​ ​did
not​ ​match​ ​our​ ​needs
as​ ​closely​ ​as​ ​other
options.

Graphviz*​[4] Able​ ​to​ ​draw
diagrams​ ​needed.

Poor​ ​available
information.

Doesn’t​ ​appear​ ​to​ ​be
built​ ​for​ ​Java​ ​or
Eclipse.

As​ ​with​ ​JGrapht,​ ​this
library​ ​was​ ​not
considered​ ​a
candidate.

4.​ ​Related​ ​Literature

At the beginning of this project, none of the team had any knowledge of assurance cases, and
obviously in order to design a tool based around the creation and use of such cases, we did
some research into them. Our research turned up three academic sources that discuss
assurance cases in general, and describe their structure. These served as a basis for our
understanding of the overall goal of our project, and shaped the design elements within our
diagram editor user interface. We also found one existing project that has some similar goals as
our project, though it was no longer maintained; however, the documentation and discussion on
the​ ​software's​ ​site​ ​was​ ​also​ ​useful​ ​in​ ​helping​ ​us​ ​understand​ ​our​ ​project.

The first document is a paper from Carnegie Mellon University by John Goodenough,
Howard Lipson, and Charles Weinstock. This paper for the most part just described what a
security assurance case is, what they are used for, and their structure. It was very useful to us
when designing our user interface, as it provides a list of necessary elements, and differentiates
the separate elements in an assurance case diagram. It doesn't really discuss assurance cases
designed within software, or tools to create/verify them, but is otherwise the theoretical basis for
our​ ​work.

The next document is a conference paper by Cristophe Ponsard, Gautier Dallons, and
Philippe Massonet. This paper is a more in depth look at assurance cases, and provides a case
study to discuss concerns on designing and then continually verifying cases and software
changes and evolves. This paper also provided some valuable information on what we needed
to​ ​consider​ ​when​ ​working​ ​on​ ​our​ ​project.

7

The final paper we looked at was another from Carnegie Mellon, and was essentially a
summary of the other paper, offering a description of assurance cases in general and their
structure, but it also discusses other notations for creating them. This was useful to us as a
lighter, quick reference for certain design elements, but is otherwise less comprehensive than
the​ ​others,​ ​and​ ​didn't​ ​offer​ ​much​ ​new​ ​information.

Finally, we looked at some documentation and papers linked with NASA's "CertWare"
software. While we were not able to actually use their software, the website it is hosted on is still
up, and offers a selection of papers discussing their design, and assurance cases in general. It
offered us a somewhat less purely academic source, and gave us some idea of the software
that​ ​already​ ​exists​ ​within​ ​the​ ​domain​ ​of​ ​our​ ​project.

References

​ ​​Goodenough​,​ ​John,​ ​Lipson,​ ​Howard,​ ​and​ ​​Weinstock​,​ ​Charles.​ ​“Arguing​ ​Security​ ​-​ ​Creating

Security​ ​Assurance​ ​Cases.”​ ​Carnegie​ ​Mellon​ ​University,​ ​4​ ​November​ ​2017.
https://www.us-cert.gov/bsi/articles/knowledge/assurance-cases/arguing-security-creatin
g-security-assurance-cases​.​ ​Accessed​ ​Feb.​ ​2017

​ ​Ponsard​ ​C.,​ ​Dallons​ ​G.,​ ​Massonet​ ​P.​ ​(2016)​ ​Goal-Oriented​ ​Co-Engineering​ ​of​ ​Security​ ​and
Safety​ ​Requirements​ ​in​ ​Cyber-Physical​ ​Systems.​ ​In:​ ​Skavhaug​ ​A.,​ ​Guiochet​ ​J.,
Schoitsch​ ​E.,​ ​Bitsch​ ​F.​ ​(eds)​ ​Computer​ ​Safety,​ ​Reliability,​ ​and​ ​Security.​ ​SAFECOMP
2016.​ ​Lecture​ ​Notes​ ​in​ ​Computer​ ​Science,​ ​vol​ ​9923.​ ​Springer,​ ​Cham

Software​ ​Engineering​ ​Institute​.​ ​Carnegie​ ​Mellon​ ​University,​ ​​ ​2017,
http://www.sei.cmu.edu/dependability/tools/assurancecase/​.​ ​Accessed​ ​Feb.​ ​2017.

Certware.​ ​Nasa,​ ​2012.​ ​​https://nasa.github.io/CertWare/​.​ ​Accessed​ ​Feb.​ ​2017

8

https://www.us-cert.gov/bsi/about-us/authors/john-goodenough
https://www.us-cert.gov/bsi/about-us/authors/charles-b-weinstock
https://www.us-cert.gov/bsi/articles/knowledge/assurance-cases/arguing-security-creating-security-assurance-cases
https://www.us-cert.gov/bsi/articles/knowledge/assurance-cases/arguing-security-creating-security-assurance-cases
http://www.sei.cmu.edu/dependability/tools/assurancecase/
https://nasa.github.io/CertWare/

Appendix​ ​I​ ​-​ ​Operation​ ​of​ ​Software
1.​ ​Install​ ​the​ ​plugin​ ​to​ ​an​ ​Eclipse​ ​installation.

2.​ ​Select​ ​File​ ​->​ ​New​ ​->​ ​Other​ ​->​ ​Graphiti​ ​Example​ ​Diagram​ ​->​ ​Senior​ ​Design

A​ ​new​ ​diagram​ ​file​ ​will​ ​be​ ​created​ ​in​ ​the​ ​current/selected​ ​directory.

3.​ ​Open​ ​the​ ​diagram​ ​file​ ​in​ ​the​ ​Eclipse​ ​editor,​ ​and​ ​drag​ ​and​ ​drop​ ​elements​ ​from​ ​the​ ​right​ ​menu.

9

4.​ ​Using​ ​Features

For custom features, including Rename, Associated Diagram, Open Linked Diagram,
Generate Callgraph, and Revalidate Claim, right click on the relevant elements, and select the
desired option. Generate Callgraph may be performed with nothing selected, as it affects all
elements.​ ​The​ ​other​ ​features​ ​require​ ​a​ ​selected​ ​element.

10

● To​ ​add​ ​entry​ ​point​ ​text,​ ​double​ ​click​ ​on​ ​an​ ​element.
● To​ ​edit​ ​an​ ​element's​ ​body​ ​text,​ ​click​ ​once​ ​on​ ​the​ ​body​ ​text​ ​box.
● To​ ​resize​ ​an​ ​element,​ ​click​ ​and​ ​drag​ ​the​ ​points​ ​on​ ​the​ ​bounding​ ​box​ ​of​ ​an

element.
● To​ ​delete,​ ​or​ ​refresh​ ​an​ ​element,​ ​select​ ​from​ ​the​ ​menu​ ​that​ ​appears​ ​when

hovering​ ​over​ ​an​ ​element,​ ​or​ ​use​ ​the​ ​right​ ​click​ ​menu.

11

After using the generate call graph feature, any invalid diagram elements will be
highlighted​ ​red​ ​as​ ​shown.

12

