

Security Assurance Case
Diagram Design Tool

Design Document

Dec1718

Advisor and Client:

Dr. Othmane

Team Member:
John Koehn: Concept holder
Brandon Huegli: Team Lead

Chiakang Hung: communication
 Jordan Lawrence: Webmaster

1718dec@iastate.edu

http://dec1718.sd.ece.iastate.edu
Revision: 21 April 2017

http://dec1718.sd.ece.iastate.edu/

Contents
1 Introduction 2

1.1 Project statement 2

1.2 Purpose 2

1.3 Goals 2

2 Deliverables 2

3 Design 3

3.1 System specifications 3

3.1.1 Non-functional 3

3.1.2 Functional 3

3.1.3 Standards 4

3.2 PROPOSED DESIGN/METHOD 4

3.3 DESIGN ANALYSIS 4

4 Testing/Development 5

4.1 INTERFACE specifications 5

4.2 Hardware/software 5

4.3 Process 6

5 Results 6

6 Conclusions 6

7 References 7

PAGE 1

1 Introduction

1.1 PROJECT STATEMENT

We are developing an eclipse plugin that will be used to design and manage
security assurance cases. Users will be able to create, edit, and save/load assurance
case diagrams, which look similar to a UML diagram in structure. Nodes of the
diagrams represent specific claims or evidence, and will be tied to portions of the
code and unit tests for the project the plugin is loaded into. Claims or evidence
that are changed or are no longer valid will be marked visually for the user.

1.2 PURPOSE

The plugin will make the development and management of assurance case
diagrams much faster and more intuitive. As a result, users will save money and
time developing cases. Additionally, because the plugin will track validity of
claims, it will ensure accuracy of the overall claim, and improve security.

1.3 GOALS
1. Create an easily accessible Eclipse plugin that any developer could

download
2. The GUI will be easy and intuitive to use for the developer. They should be

easily able to link code in different projects that meet different security
cases and be able to develop test to verify they meet them.

3. The plugin will give visual feedback to the developer if they are no longer
meeting a security case

4. The plugin will actually be helpful to developers and speed up the
development process

5. The plugin has documentation that a developer could understand to learn
how it works and be able to use successful

6. Help Dr. Othmane further his research and be able to use the plugin in the
future.

2 Deliverables
- A plugin importable into any existing eclipse project.
- A GUI for creating and modifying assurance case diagrams.
- A system where diagram nodes are tied to code snippets within the project,

as well as unit tests.

PAGE 2

3 Design

As the primary component from a user’s perspective is the GUI, it was
important to select an appropriate framework for developing the interface, keeping
in mind the requirements of the project. We then decided which was a more
promising candidate, and selected Graphiti to proceed with development.

 3.1 SYSTEM SPECIFICATIONS

3.1.1 Non-functional
1. Visually pleasing and professional interface

2. Intuitive and easy to use.

3.1.2 Functional
1. Ability to add/remove graphical elements to assurance case diagram

2. Multiple graphical elements to choose from

a. Case claim
b. Evidence
c. Edges

3. User interaction with elements

a. Move elements around the chart
b. Edit text in the element
c. Draw connections between elements

4. Open submenu for each node to connect underlying code or tests to

elements
a. Open currently linked code sections
b. Select new code sections to link
c. Update diagram node in response to code changes appropriately

5. Visually alert user when claims/evidence nodes are no longer valid.

a. Propagate invalid status to parents.
b. Failed tests change element color.
c. Changed, potentially vulnerable, code changes element color.

PAGE 3

6. Save/Load diagram as part of the Eclipse project

7. Import and export diagram files into the project
a. Use human readable formats, so diagram files can be edited directly.

3.1.3 Standards
We will be following the IEEE code of ethics for this project. Our tool is

meant to help developers make more secure software. If our tool has a bug that
results in it not notifying a developer that a security case is no longer being meet
then we would be compromising a software’s security which could cause damage.

The plugin will also meet established conventions on the design of safety
assurance cases as specified by Carnegie Mellon University, and governmental
agencies such as NASA and the FDA. (Goodenough, et. al., Ponsard et. al.,
Carnegie Mellon University)

3.2 PROPOSED DESIGN/METHOD

The GUI of the project, and the overall plugin structure will be
implemented using the Eclipse Graphiti framework, which handles lower level
interactions, and allows creation of the necessary diagram components. The
supporting features, as well as Graphiti itself use Java.

3.3 DESIGN ANALYSIS

At the start of the semester, we experimented with a variety of GUI
frameworks to use, as we had decided Java Swing/Fx was not sufficient for our
project. After evaluating the options, we selected the Eclipse Graphiti framework
for development. From there, we decided the first phase of development should be
the plugin’s GUI. The primary requirements and features of the GUI will be
completed this semester.

Next semester, we will begin on “phase two” of the plugin, and begin adding
desired supporting features, like the ability to tie code and test cases to diagram
elements, and other features specified with Dr. Othmane’s input.

PAGE 4

4 Testing/Development

4.1 INTERFACE SPECIFICATIONS

In our project we are interfacing with Eclipse to create a plugin for Eclipse.
We also need to be able to interface with other Eclipse Projects to do analysis on
the code of other projects.

Additionally, while the plugin will not do so directly, testing of our product
will be done in conjunction with existing security software, including Zen Cart,
along with existing documentation and specifications for assurance cases.

We are examining source code from the eclipse plugin project EditBox[1]
(see references “Other”) to see how we can interface our plugin with source code of
other projects. Once we understand how EditBox does it, we will take the
methodology used and implement it into our code.

 4.2 HARDWARE/SOFTWARE

JGraphx*[1] Would be able to
meet the
requirements of
the project.

Would be easy to
begin
development with.

Built on Java
Swing.

Not eclipse
specific.

Dated aesthetic.

We decided that
while this
framework was a
candidate as it
met our
requirements, it
was not the best
option available.

Eclipse Graphiti*[2] Built for making
eclipse plug ins.

Aesthetically the
most pleasing.

Acceptable
documentation
and tutorials.

Team lacks
experience with
plug in
development.

The team has
chosen Graphiti
for development
of the project.

JGrapht*[3] Would’ve been
likely able to meet
requirements in

Built on Java
Swing.

This framework
was not
considered a

PAGE 5

most ways. Not intended for
the exact style of
diagram
necessary.

candidate, as it
did not match our
needs as closely as
other options.

Graphviz*[4] Able to draw
diagrams needed.

Poor available
information.

Doesn’t appear to
be built for Java or
Eclipse.

As with JGrapht,
this library was
not considered a
candidate.

* Information taken from respective websites, see references “GUI Libraries.”

4.3 PROCESS

For each framework, we primarily based our decisions on the available
documentation, and any provided examples. Many provided images or sample
projects of what could be done with the framework, and described how they could
be used. Based on those, we decided how closely the framework aligned with our
requirements.

The plugin and GUI will be tested by using existing assurance cases as a
reference, and ensuring we can replicate them. Then, we will test it using existing
software, such as ZenCart.

5 Results

In the testing phase, we experimented with a lot of different GUIs. JGraphx
and JGrapht are both outdated, complex and hard to understand. Meanwhile
Graphviz lacked documentation and didn’t have as many features and capabilities
as we would have liked. However, Graphviz was considered a fallback in case
Graphiti failed.

Graphiti in our testing proved to be very powerful. A lot of the issues we
had with it initially was we didn’t understand how to get the framework to run.
However, after going through tutorials we started to understand it and got running
examples. The tool is flexible and is able to accomplish a lot with less code than
the other frameworks. Therefore we decided on Graphiti.

Our work with Graphiti as are graphic’s API has been successful. We have
been able to build our software to create intractable diagrams that we believe to be
intuitive and meet the needs of complex software projects. As we become better

PAGE 6

versed with the Graphiti library it is becoming easier to add more complex features
into our tool. As we near completing our current list of features needed for the
GUI, we have begun to devote resources to the next part of the project by
researching how we can incorporate our tool with ZenCart code.

6 Conclusions

We have evaluated and selected a framework that will meet the
requirements of the project, and are learning more about using it as we begin
development of the project. We want to develop an eclipse plugin to manage
security assurance case diagrams, and Graphiti is definitely the best option to meet
these requirements, as it is essentially for diagram based user interfaces, and
already takes the form of a plugin naturally. From there, the diagram editor has
been completed based on our functional requirements for that portion of the
plugin. Users are able to add, remove and edit nodes necessary to replicate existing
assurance cases.

As work progresses, additional functional requirements will be
implemented using standard Java, as Graphiti itself is built with Java. We are
beginning to explore how we can interface our tool with code from other projects
as our main GUI features get finished.

7 References

Assurance Case General Information:

 Goodenough, John, Lipson, Howard, and Weinstock, Charles. “Arguing Security -

Creating Security Assurance Cases.” Carnegie Mellon University, 4
November 2017.
https://www.us-cert.gov/bsi/articles/knowledge/assurance-cases/arguing-s
ecurity-creating-security-assurance-cases. Accessed Feb. 2017

 Ponsard C., Dallons G., Massonet P. (2016) Goal-Oriented Co-Engineering of
Security and Safety Requirements in Cyber-Physical Systems. In: Skavhaug
A., Guiochet J., Schoitsch E., Bitsch F. (eds) Computer Safety, Reliability,
and Security. SAFECOMP 2016. Lecture Notes in Computer Science, vol
9923. Springer, Cham

PAGE 7

https://www.us-cert.gov/bsi/about-us/authors/john-goodenough
https://www.us-cert.gov/bsi/articles/knowledge/assurance-cases/arguing-security-creating-security-assurance-cases
https://www.us-cert.gov/bsi/about-us/authors/charles-b-weinstock
https://www.us-cert.gov/bsi/articles/knowledge/assurance-cases/arguing-security-creating-security-assurance-cases

Software Engineering Institute. Carnegie Mellon University, 2017,
http://www.sei.cmu.edu/dependability/tools/assurancecase/. Accessed Feb.
2017.

Assurance Case Software:

Certware. Nasa, 2012. https://nasa.github.io/CertWare/. Accessed Feb. 2017

GUI Libraries:

[3]Barak Naveh. Jgrapht. http://jgrapht.org/. Accessed Feb. 2017

[2]Graphiti. The Eclipse Foundation. https://eclipse.org/graphiti/. Accessed Feb.
2017

[1]Jgraphx. https://github.com/jgraph/jgraphx. Accessed Feb. 2017

[4]John Ellson, Emden Gansner, Yifan Hu, Arif Bilgin, and Dwight Perry. Graphviz.
http://www.graphviz.org/. Accessed Feb. 2017

Other:
[1]EditBox. https://github.com/Nodeclipse/EditBox. Accessed Apr. 2017

PAGE 8

http://www.graphviz.org/
https://github.com/jgraph/jgraphx
http://jgrapht.org/
https://eclipse.org/graphiti/
http://www.sei.cmu.edu/dependability/tools/assurancecase/
https://nasa.github.io/CertWare/

